ON THE STRATIGRAPHICAL DISTRIBUTION OF SMALL BENTHIC FORAMINIFERA AND THE BIOSTRATIGRAPHY OF THE PALEOCENE OF THE COASTAL PART OF EAST STARA PLANINA

B. Valchev
University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, e-mail: b_valchev@mgu.bg

ABSTRACT. The biostratigraphical subdivision of the Paleocene of the coastal part of East Stara Planina is of great interest for the Paleogene stratigraphy of Bulgaria, because of the fact that the first find of Paleocene sediments in our country was made in the same area. To elucidate the biostratigraphical value of small benthic foraminifera from the studied area we examined the stratigraphical distribution of 229 species and 5 subspecies from 9 borehole and 4 outcrop sections, comprising two types of assemblages - "Byala-type" and "Flysh-type". Planktic foraminiferal and calcareous nanoplankton zonations defined by previous investigators were used for a biostratigraphical framework.

In the studied area, foraminiferal remains were obtained from 251 samples (Ivanov, Stoykova, 1994; Sinnyovsky, 2001) from the same area. The studied foraminiferal assemblages are dominated by zones and transition between these zones, which allows us to find criteria (first and last occurrence) for a detailed biostratigraphical subdivision. This fact confirms the local character and the ecological nature of the zones defined by Valchev (2003).

KEY WORDS: Paleocene, benthic foraminifera, biostratigraphy, East Stara Planina.

ОТНОСНО СТРАТИГРАФСКОТО РАЗПРОСТРАНЕНИЕ НА МАЛКИТЕ БЕНТОСНИТЕ ФОРАМИНИФЕРИ И БИОСТРАТИГРАФСКАТА ПОДЯЛБА НА ПАЛЕОЦЕНСКАТА СЕРИЯ В ПРИМОРСКАТА ЧАСТ НА ИЗТОЧНА СТАРА ПЛАНИНА

B. Вълчев
Минно-геоложки университет "Св. Иван Рилски", 1700 София, e-mail: b_valchev@mgu.bg

РЕЗЮМЕ. Биостратиграфската подялба на Палеоценската серия в приморската част на Източна Стара планина е от особен интерес за стратиграфията на Палеоценската система в България, тъй като тук за първи път е доказано наличието на палеоценски седименти в страната. За изясняване на биостратиграфската стойност на малките бентосни фораминифери от изучавания район е проследено стратиграфското разпространение на 229 вида и 5 подвида в 9 сондажа и 4 разреза в естествени разкрития, участващи в изграждането на два типа ассоциации – "Беленски" и "Флишкови". За биостратиграфската рамка са използвани дефинираните от предишни изследователи зони по планктонни фораминифери и варовит нанопланктон.


КЛЮЧОВИ ДУМИ: Палеоценска серия, бентосни фораминифери, биостратиграфия, Източна Стара планина.

Introduction

The biostratigraphical subdivision of the Paleocene of the coastal part of East Stara Planina is of great interest for the Paleogene stratigraphy of Bulgaria, because of the fact that the first find of Paleocene sediments in our country was made in the same area (Трифонова, 1960). Investigating the stratigraphical range of the established species of small benthic foraminifera, the present work aims to find events allowing to define biostratigraphical zones which could be correlated to zones based on planktic organisms.

Material and methods

To elucidate the biostratigraphical value of the small benthic foraminifera from the studied area the stratigraphical
Previous investigations

Investigations of the Paleocene foraminiferal assemblages from the coastal part of East Stara Planina started at the end of the 50s and the beginning of the 60s of the 20th century, when Трифонова (1960) first established Late Paleocene sediments in Bulgaria and published a list of foraminifera. At the same time Станчева (1961) provided taxonomical descriptions of some agglutinated species from the Kozichino Village area. Darakchieva (1999) published microphotographs of some species, but detailed taxonomical studies have been carried out since the end of the 90s, when Valchev (Valchev, 2000, 2001, 2002; Вълчев, 2002) gave descriptions of some groups benthic foraminifera (Family Nodosariidae, diverse agglutinants and hyaline unilocular forms).

Results

To elucidate the biostratigraphical value of the small benthic foraminifera I divided the species from both “Byala-type” and “Flysh-type” assemblages into groups according to their stratigraphical range. The stratigraphical distribution of the species in the studied sections is shown on Appendix.

“Byala-type” assemblages

This type was established in the strata of the Byala Formation, and it is characterized by high species diversity (total 228 species). As a whole the assemblage composition is determined by the presence of 34 species (Fig. 2).

The stable taxonomical composition of Paleocene benthic foraminiferal assemblages (small number of first and last occurrence), as well as the cosmopolitan distribution of the most of the species (Berggren, 1984), does not allow a detailed biostratigraphical subdivision. Valchev (2003b) confirmed this fact dividing one zone in the north part and two zones in the south part of the studied area. The author noted that these zones were not based on typical first and last occurrence, and they were of ecological nature. The presence of different paleoecological parameters made the author (Valchev, 2003a; Valchev, 2003c, in press) divide two types of assemblages (“Byala-type” and “Flysh-type”) characterized by different taxonomical composition and structure.

Fig. 1. Simplified geological map of the studied area (emended after Vangelov et al., 1996)

1- Odartsi Fm. (Miocene); 2 – Ruslar Fm. (Oligocene); 3 – Avren Fm. (Upper Eocene); 4 – Obzor Fm. (Middle-Upper Eocene); Dvoynitsa Fm. (Upper Paleocene-Middle Eocene); 6 – Byala Fm. (Upper Campanian-Paleocene);
7 – Emine Fm. (Upper Campanian-Paleocene); 8 – borehole; 9 – outcrop section

Fife groups based on the stratigraphical range of the species were divided (Fig. 3A): 1) species continuing from the Maastrichtian and disappearing at the end of the Paleocene (11.4% of the total number of species in the assemblages); 2) species, ranging in the Paleocene only (5.7%); 3) species, first occurring at the beginning of the Paleocene and continuing in the Eocene (5.7%); 4) transitional species (17.1%); 5) species, represented by single specimens in the Paleocene section and because of that with unknown stratigraphical range (60.1%). The most important groups in the assemblage structure are the transitional [the main contributors Bathysiphon discreta (Brady), Rhizammina indivisa Brady, Bulimina trinitatensis Cushman and Jarvis, Nuttalides truempyi (Nuttal), Osangularia velociosaensis (Cushman), Oridorsalis
megastomus (Grzibowski), Anomalinoidea acutus (Plummer), Heterolepa grimsdalei (Nuttal), Heterolepa perfuclida (Nuttal), and the secondary Saccammina placenta (Grzybowski), Marssonella indentata Cushman and Jarvis, Marssonella oxycon (Reuss), Bannerella retusa (Cushman),Claviliinoides asperus (Cushman), Lenticulina pseudomaminigera (Plummer), Astacolus gladius (Philippi), Gyroldinoides girardanus (Reuss) and Maastrichtian-Paleocene species [the main contributor Gavelinella beccaniormis (White) and the secondary Cibicoidoides dayi (White), Gyroldinoides globosus (Hagenow), Nosodaria lymbata d’Orbigny, Pyramidullina velascoensis (Cushman), Spiroplectinella dentata (Alth)].

The group of Paleocene species is represented by Oridorsalis lorus (Schwager), Claviliinoides trilateralus (Cushman), and the Paleocene-Eocene group – by Gaudryina pyramidalta Cushman, Anomalinoidea danicus (Plummer), Lenticulina inornata (d’Orbigny).

Fig. 3. Structure of the “Byala-type” assemblages based on the stratigraphical range of the species

Groups of species: 1 – Maastrichtian-Paleocene; 2 – Paleocene; 3 – Paleocene-Eocene; 4 – transitional; 5 – represented by single specimens

The group of transitional species is the most numerous – 61.7% of total number of dominant species (Fig. 3B), followed by the Maastrichtian-Paleocene group (23.5%), while the other groups are of low importance (total 14.8%).

“Flysh-type” assemblages

This type was established in the strata of the Emine Formation. It is characterized by moderate species diversity (total 125 species). The assemblage composition is determined by the presence of 18 species (Fig. 4).

Six groups based on the stratigraphical range of the species were divided (Fig. 5A): 1) species continuing from the Maastrichtian and disappearing at the end of the Paleocene (3.9% of the total number of species in the assemblages); 2) species, ranging in the Paleocene only (5.9%); 3) species, disappearing at the end of the Lower Paleocene (2.8%); 4) transitional species (6.6%); 5) species, represented by single specimens in the Paleocene section section and because of that with unknown stratigraphical range (80.0%).

The Lower Paleocene is dominated by the Paleocene group (the main contributor Bathysiphon sp., and the secondary Psammosphaera sp. 1 i Trochammina deformis). Here the transitional Bathysiphon discreta (Brady), Rhizammina indivisa Brady, Saccammina placenta (Grzybowski) and the Maastrichtian-Paleocene group [the main contributor for the Middle Paleocene Bathysiphon microrhaphidus Samuel and the secondary Hormosina velascoensis (Cushman), Hyperammina dilatata Grzybowski, Recurvirodes imperfectus (Hanzlikova)] are of low percent abundance.

The Lower Paleocene is marked by the occurrence of hyaline Nodosaria lymbata d’Orbigny, Chloistomelloides sp., Oridorsalis megastomus (Grzybowski), Astacolus gladius (Philippi), but they are not of great importance. In the Middle Paleocene an increase of the importance of Maastrichtian-Paleocene group is observed and it dominates the assemblage structure in this level. This fact is influenced by the sharp increase of Bathysiphon microrhaphidus Samuel percent abundance. Here secondary contributors are from the transitional and Paleocene groups. The Upper Paleocene is strongly dominated by transitional group (because of the sharp increase of Saccammina placenta (Grzybowski) percent abundance), followed by Paleocene and Maastrichtian-Paleocene groups. The Middle-Upper Paleocene species (Reophax duplex Grzybowski), is not of importance.

Fig. 4. Taxonomical composition of the “Flysh-type” assemblages with the maximum percent abundance of the dominant species (emended after Valchev, 2003a, c)

Fig. 5. Structure of the “Flysh-type” assemblages based on the stratigraphical range of the species

Groups of species: 1 – Maastrichtian-Paleocene; 2 – Lower Paleocene; 3 – Paleocene; 4 – Middle-Upper Paleocene; 5 – transitional; 6 – represented by single specimens
The group of transitional species is again the most numerous – 33.4% of total number of dominant species (Fig. 5B), followed by the Maastrichtian-Paleocene (27.8%), and Lower Paleocene (hyaline) (22.2%) groups. The Paleocene (11.1%) and Middle-Upper Paleocene species (5.5%) are not of great importance. As could be seen there are no groups with a strong domination in the “Flysh-type” assemblages.

Conclusions

The study of the stratigraphical distribution of the Paleocene small benthic foraminifera from the coastal part of East Stara Planina leads to the following conclusions: 1) Fife groups benthic foraminifera (Maastrichtian-Paleocene, Paleocene, Paleocene-Eocene, transitional, represented by single specimens) in the “Byala-type” and six groups (Maastrichtian-Paleocene, Paleocene, Early Paleocene, Middle-Late Paleocene, transitional, represented by single specimens) in the “Flysh-type” were established; 2) Both assemblages are dominated by transit and Maastrichtian-Paleocene species, which does not allow us to find criteria (first and last occurrence) for a detailed biostratigraphical subdivision; 3) The “Byala-type” assemblages are strongly dominated by the group of transitional species, while in the “Flysh-type” assemblages there are no groups with a strong domination; 4) The actual lack of first and last occurrences in the Paleocene section, as well as the strong dependence of benthic foraminifera on paleoenvironment (appearance and disappearance of some species is influenced by paleoecological reasons), confirms the local character and the ecological nature of the zones defined by Valchev (2003).

Appendix

Distribution of the dominant species in the Paleocene of the coastal part of East Stara Planina.
Valchev B. ON THE STRATIGRAPHICAL ...
References


