TECHNICAL DIAGNOSTICS OF PIPELINES OF HYDRAULIC SYSTEMS

Dragan Zhivkovich1, Vyara Pozhidaeva2, Tsxian Zhepenich1

1 High Technical School, 23000 Zrenjanin, Serbia, E-mail: zivkkev@drenik.net
2 University of Mining & Geology "St. Ivan Rilski" 1700 Sofia, E-mail: vpojidaeva@abv.bg

ABSTRACT: The hydraulic systems are industrial noise sources, the level of which mainly depends on the good condition of the regulative valves. The noise of the regulative valves is produced as a result of turbulence of the fluid flow at a pressure drop across the valve. The present article examines the methods for specifying the noise from the regulative valves into the hydraulic systems in connection with the needs of the technical diagnostics.

TEХНИЧЕСКА ДИАГНОСТИКА НА ТРЪБОПРОВОДИ ОТ ХИДРАВЛИЧНИ СИСТЕМИ
Драган Живкович1, Вяра Пожидаева2, Цвиан Желенич1

1 Висше техническо училище, 23000 Зренянин, Република Сърбия
2 Минно-геоложки университет „Св. Иван Рилски”, 1700 София

РЕЗЮМЕ: Хидравличните системи са източници на промишлен шум, чието ниво зависи в голяма степен от изправността на регулиращите клапани. Шумът от регулиращите клапани е резултат от турбулентността на флуидния поток при спад на налягането в клапана. В настоящата статия се разглежда методика за определяне на шума от регулиращите клапани в хидравличните системи за нуждите на техническата диагностика.

Introduction

The hydraulic systems are considerable industrial noise sources. This noise is mainly produced by the regulative valves located along the pipeline and directly depends on their construction and good condition. There are two types of noise in the regulative valves, namely mechanical noise and hydraulic noise. The mechanical noise is caused by the vibrations of the valve elements, as a result of the accidental fluctuations of the pressure in the frame or as a result of the contact of the fluid and the movable and flexible elements. It is also often when vibrations of the resonance frequency of the elements cause their destruction. As a whole the noise from mechanical vibrations is considered a useful side effect, which a warning for some possible damage, but is not subject to valuation.

The hydraulic noise is subdivided into hydrodynamic noise that is caused by cavitation, and streamline noise as a result of the turbulence of the gas phase of the flow. The two types of noise are of great interest for the technical diagnostics of pipeline systems.

Valuation methods for noise of the regulative valves

The development of an analytical method, which can provide a precise description of the mechanism of the hydrodynamic and aerodynamic noise in the regulative valves, is a complex problem. The constructive variety of valves and pipelines makes the finding of a common approach for process modeling even more difficult. More precise methods for evaluating the noise characteristics may be obtained on the basis of an experiment.

Evaluation of aerodynamic noise

The acoustic power, generated by the compressed flow through the regulative valve is subject to the following dependency:

for a valve that has one outlet

\[W = f \left[C_g^2 (\Delta P)^2 \Delta \left(\frac{P}{P_1} \right) \right] \]

(1)

for a valve that has N numbers of outlets

\[W = f \left[\frac{1}{N} C_g^2 (\Delta P)^2 \Delta \left(\frac{P}{P_1} \right) \right] \]

(2)

where: \(\Delta \) – functional parameter
\(\Delta P \) – pressure fall
\(P_1 \) – pressure of the incoming flow, absolute pressure
\(C_g \) – size coefficient of the gas, which can be determined by the following three equations:

for the gas flow

\[C_g = \frac{Q}{P_1} \sqrt{\frac{GT}{520}} \frac{1}{\sin \left(\frac{3417 \sqrt{\Delta P}}{C_i \sqrt{P_1}} \right)} \]

(3)
for the flow of water or other type of steam

\[C_g = \frac{Q_1}{1.06 \sqrt{d_1 P_i}} \sin \left(\frac{3417 \frac{\Delta P}{P_i}}{C_1 \sqrt{P_i}} \right) \]

(4)

for fluid flow

\[C_p = Q_1 \sqrt{\frac{G_L}{\Delta P}} \]

(5)

where:
- \(C_g \) - size coefficient of the gas
- \(C_f \) - size coefficient of the fluid
- \(C_i \) = \(\frac{C_g}{C_f} \) (indicator provided in the valve technical data by the company-producer)

\(Q \) - velocity of the gas flow
\(Q_1 \) - velocity of the flow of the water steam
\(Q_2 \) - velocity of the fluid flow
\(G \) - gas density (Table 2)
\(G_f \) - fluid density
\(P_1 \) - pressure at the valve entrance
\(\Delta P \) - fall of the valve pressure
\(T \) - absolute gas temperature at the valve entrance,
\(R \) (degrees Renkin: \(T_R = 1.87 \cdot C + 491,67 \))

On the basis of the above dependencies can be made a valuation of the level noise in the environment, as a result of compressed fluid through the valve, namely:

\[L_P = L_{\lambda,P} + \Delta L_{C_g} + \Delta L_{P/P} + \Delta L_K \]

(6)

where:
- \(L_{\lambda,P} \), dB - general noise level measured at a preliminarily specified point (at a distance of 1.2 m from the valve outlet and at a distance of 0.7 m from the pipe surface);
- \(\Delta L_{C_g} \), dB - general level of the acoustic pressure determined according to \(\Delta P \);
- \(\Delta L_{P/P} \), dB - correction for \(C_g \);
- \(\Delta L_K \), dB - correction for the valve and the pressure fall

\(\Delta L_{P/P} \), dB - correction for the acoustic processing according to the pipe thickness, the type of the pipeline insulation and noise killers (in accordance with the technical characteristics of the producer).
\(d_1 \) - steam density

Table 1

<table>
<thead>
<tr>
<th>Gas</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>0.90</td>
</tr>
<tr>
<td>Air</td>
<td>1.00</td>
</tr>
<tr>
<td>Butane</td>
<td>2.00</td>
</tr>
<tr>
<td>Ethane</td>
<td>1.03</td>
</tr>
<tr>
<td>Methane</td>
<td>0.55</td>
</tr>
<tr>
<td>Natural gas - 0.6 G</td>
<td>0.60</td>
</tr>
<tr>
<td>Propane</td>
<td>1.52</td>
</tr>
<tr>
<td>Propylene</td>
<td>1.45</td>
</tr>
</tbody>
</table>

Diagrams for industrial application have been developed on the basis of equation No. 6 (Fig.1 and Fig.2)

Fig.1. General level acoustic pressure for all types of valves.

Fig.2. Correction \(\Delta L_{C_g} \) for all types of valves.

Evaluation of hydrodynamic noise

The acoustic power generated by the non-compressed fluid flow through the regulative valve is subject to the following dependency:

\[W = f \left[C_g^2 \Delta \left(\frac{\Delta P}{P_1 - P_f} \right) \right] \]

(7)

where:
- \(W \) - acoustic power, \(W \);
- \(C_v \) - size of the fluid;
- \(P_1 \) - pressure at the valve entrance, \(\text{N/m}^2 \);
- \(P_f \) - pressure of the steam on the fluid flow, \(\text{N/m}^2 \);
- \(\Delta P \) - pressure fall in the valve, \(\text{N/m}^2 \)

The valuation of the hydrodynamic noise emitted to the environment is made according to the following dependency:

\[L_P = L_{\lambda,P} + \Delta L_{C_g} + \Delta L_{P/P} + \Delta L_K \]

(8)

where:
- \(L_{\lambda,P} \), dB - general noise level measured at a preliminarily specified point (at a distance of 1.2 m from the valve outlet and at a distance of 0.7 m from the pipe surface);
- \(\Delta L_{P/P} \), dB - general level of the acoustic pressure determined according to \(\Delta P \) and \(\Delta P_f \);
- \(\Delta L_{C_g} \), dB - correction for \(C_g \);
- \(\Delta L_{P/P} \), dB - correction for a specific type of valve and for flow regime.
\[\Delta L_K, \text{ dB} \] - correction for the acoustic processing according to the pipe thickness, the type of the pipeline insulation and noise killers (in accordance with the technical characteristics of the producer).

Diagrams for industrial application have been developed on the basis of equation No. 8 (Fig.3 and Fig.4).

![Fig.3. General level acoustic pressure for all types of valves.](image)

![Fig.4. Correction \(\Delta L_{C_L} \) for all types of valves.](image)

Conclusions

The noise in the hydraulic systems is an indicator, subject to periodical control, in connection with the sanitary labour standards, as well as in connection with the establishment of damages and failures in the work of the system elements. Pumps, compressors and regulative valves are part of the general noise produces by the hydraulic systems. Their good condition is of great importance for the pipeline systems, especially when petrol products are transported through them. The possibility for determining the level of the noise, produced by the regulative valves, and separating it from the general noise in the hydraulic system, enable the diagnosticians to identify the incipient damages to the valve in due time and to localize more precisely the damages along the pipeline.

References

Rancic M., Zivkivic D., Mr. Jovanic D., Modeliranje logickih struktura primenom petrijevih mreža, 31st Jupiter Konferencija, Masinski fakultet univerziteta u Beogradu, Zlatibor, april, 2005.

Zivkovic D., Rancic M., Salemovic D., Information Systems for Supporting Preventative Maintenance of Machinery and Equipment Used in Open-Pit Coal Mining, VIII-th Open Pit and Underwater Mining Conference, 31st May – 4th Juny, 2005, Sunny beach resort, pp.216-222

Препоръчана за публикуване от
Рецензент доц. дър Св. Токмачкиев, МЕМФ