IS THERE A MATERIAL CONSTANT WHICH CHARACTERISES MINERAL RESOURCES GRINDABILITY?

N. Magdalinovic¹, S. Magdalinovic², R. Jovanovic¹, D. Stanujkic¹

¹ Megatrend university Belgrade, Faculty of management Zajecar, 19000 Zajecar, Serbia
² Institute of mining and metallurgy Bor, 19210 Bor, Serbia

ABSTRACT. This paper defines the grindability coefficient as the material constant that unambiguously characterizes the resistance of raw material to grinding. The grindability coefficient does not depend on the size of grinding product and in that way it facilitates the analytical consideration of the relationship between the used energy and grinding size.

Introduction

Among the three most mentioned comminution laws (Rittinger, 1867; Kick, 1885; and Bond, 1952), only Bond’s law has a wide practical use (Bond, 1961):

\[W = W_i \left(\frac{10}{\sqrt{P}} - \frac{10}{\sqrt{F}} \right) \]

where:
- \(W \) is specific energy consumption, in kWh/t;
- \(W_i \) is Bond Work Index, in kWh/t;
- \(P \) is square sieve opening passing 80 % of the product, in \(\mu \)m; and
- \(F \) is square sieve opening passing 80 % of the feed, in \(\mu \)m.

According to the definition of F.C. Bond, the Work Index represents the energy which is required to grind one short ton of ore (1 sht = 907.18 kg) of unlimited large sizes (\(F = \infty \)) down to the size which passing of 80% through the sieve with square mesh size of 0.1 mm (\(P = 100 \mu \)m).

Bond’s law has been widely used in practice because Bond had defined the laboratory test for determining Bond's Work Index which characterizes the resistance of raw material to grinding (defines the raw material grindability), which is not the case with similar parameters in the laws of Rittinger and Kick.

The only “disadvantage” of Bond's law of comminution is that Bond's Work Index \(W_i \) is not the material constant of raw material, but it varies with the change of grinding product size \(P \). That is why Bond recommends that, in order to estimate the necessary energy for grinding, the Work Index \(W_i \) should be determined in the laboratory for grinding product size which is the same or very similar to the grinding product size of an industrial mill (Bond, 1961; Magdalinovic, 2003). This significantly complicates the use of Bond’s law for analytical considerations of energy spending optimisation in the process of mineral resources comminution. Comparison of raw materials according to grindability, stated by Bond’s Work Index, is possible only if it is determined in a laboratory on all of the raw materials of the same grinding product size. N. Magdalinovic, in his research work, has pointed out in detail to this disadvantage and suggested a procedure for overcoming it (Magdalinovic, 1989a, 1989b, 1997, 2003; Ozkahraman, 2005).

The objective of the paper is to explore the possibility of a single parameter presence as a material constant which characterizes the raw material grindability, independent of the grinding product size \(P \). In order to answer the question we have used the experimental results of the research of many years conducted by N. Magdalinovic on different raw materials as well as the latest research of the authors of this paper carried out on the copper ore within the project TR-33023 financed by the Ministry of Education and Science of the Republic of Serbia.
Experimental work

Standard Bond's test for determining work index \(W_i \) is done in laboratory Bond's ball mill which is used for determining the necessary parameters for calculating Bond's work index according to formula (Bond, 1961):

\[
W_i = 1.1 \frac{44.5}{P_c^{0.23} G^{0.82}} \left(\frac{10}{\sqrt{P}} - \frac{10}{\sqrt{F}} \right)
\]

(2)

Where:
- \(P_c \) is mesh size of the test sieve, \(i \) in \(\mu m \);
- \(G \) is newly formed undersize per one mill revolution, in g/min.;
- \(P \) is mesh size passing 80 % of the undersize of the test sieve, from the last cycle, in \(\mu m \); and
- \(F \) is mesh size passing 80 % of starting sample, in \(\mu m \).

Table 1 shows the research results. The results clearly show that Bond's work index is not a material constant of raw material but varies with the change of mesh size \(P_c \), i.e. with the change of mesh size of the test sieve \(P_c \).

Table 1
Bond Work Index in ball mill at different sizes of grinding products

<table>
<thead>
<tr>
<th>(P_c)</th>
<th>Copper ore</th>
<th>Andesite</th>
<th>Limestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>347</td>
<td>15.4</td>
<td>355</td>
</tr>
<tr>
<td>315</td>
<td>195</td>
<td>13.8</td>
<td>192</td>
</tr>
<tr>
<td>160</td>
<td>95</td>
<td>11.8</td>
<td>116</td>
</tr>
<tr>
<td>80</td>
<td>53</td>
<td>12.9</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 1 also shows that the proportionality coefficient \(k \) in formula (3) represents the material constant for a specific raw material and we shall call it the grindability coefficient. It is independent of the undersize and unambiguously characterizes the resistance of the raw material to grinding. So, the answer to the question in the title of the paper is positive.

G = k\sqrt{P}

(3)

References

